Skip to main content

图片主题色提取技术

一、通过 CSS 快捷提取

1、图片模糊

div {
width: 300px;
height: 200px;
img {
width: 300px;
height: 200px;
filter: blur(50px);
}
}

2、放大切割

div {
width: 300px;
height: 200px;
position: relative;
overflow: hidden;
img {
width: 300px;
height: 200px;
filter: blur(50px);
transform: scale(3);
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
}
}

二、通过算法提取

1、中位切分法(Median cut)

将图像每个像素颜色看作是以 R、G、B 为坐标轴的一个三维空间中的点,由于三个颜色的取值范围为 0~255,所以图像中的颜色都分布在这个颜色立方体内;

在这个三维空间中,以 RGB 中最长的一边为基准,从中位数的位置做切割,使得到的两个长方体像素数量相同;

重复这个过程,直到最终切分得到长方体的数量等于主题颜色数量,最后取长方体的中点即为主题色。

(function () {
/**
* 颜色盒子类
*
* @param {Array} colorRange [[rMin, rMax],[gMin, gMax], [bMin, bMax]] 颜色范围
* @param {any} total 像素总数, imageData / 4
* @param {any} data 像素数据集合
*/
function ColorBox(colorRange, total, data) {
this.colorRange = colorRange;
this.total = total;
this.data = data;
this.volume = (colorRange[0][1] - colorRange[0][0]) * (colorRange[1][1] - colorRange[1][0]) * (colorRange[2][1] - colorRange[2][0]);
this.rank = this.total * (this.volume);
}

ColorBox.prototype.getColor = function () {
var total = this.total;
var data = this.data;

var redCount = 0,
greenCount = 0,
blueCount = 0;

for (var i = 0; i < total; i++) {
redCount += data[i * 4];
greenCount += data[i * 4 + 1];
blueCount += data[i * 4 + 2];
}

return [parseInt(redCount / total), parseInt(greenCount / total), parseInt(blueCount / total)];
}

// 获取切割边
function getCutSide(colorRange) { // r:0,g:1,b:2
var arr = [];
for (var i = 0; i < 3; i++) {
arr.push(colorRange[i][1] - colorRange[i][0]);
}
return arr.indexOf(Math.max(arr[0], arr[1], arr[2]));
}

// 切割颜色范围
function cutRange(colorRange, colorSide, cutValue) {
var arr1 = [];
var arr2 = [];
colorRange.forEach(function (item) {
arr1.push(item.slice());
arr2.push(item.slice());
})
arr1[colorSide][1] = cutValue;
arr2[colorSide][0] = cutValue;
return [arr1, arr2];
}

// 找到出现次数为中位数的颜色
function getMedianColor(colorCountMap, total) {
var arr = [];
for (var key in colorCountMap) {
arr.push({
color: parseInt(key),
count: colorCountMap[key]
})
}

var sortArr = __quickSort(arr);
var medianCount = 0;
var medianColor = 0;
var medianIndex = Math.floor(sortArr.length / 2)

for (var i = 0; i <= medianIndex; i++) {
medianCount += sortArr[i].count;
}

return {
color: parseInt(sortArr[medianIndex].color),
count: medianCount
}

function __quickSort(arr) {
if (arr.length <= 1) {
return arr;
}
var pivotIndex = Math.floor(arr.length / 2),
pivot = arr.splice(pivotIndex, 1)[0];

var left = [],
right = [];
for (var i = 0; i < arr.length; i++) {
if (arr[i].count <= pivot.count) {
left.push(arr[i]);
}
else {
right.push(arr[i]);
}
}
return __quickSort(left).concat([pivot], __quickSort(right));
}
}

// 切割颜色盒子
function cutBox(colorBox) {
var colorRange = colorBox.colorRange,
cutSide = getCutSide(colorRange),
colorCountMap = {},
total = colorBox.total,
data = colorBox.data;

// 统计出各个值的数量
for (var i = 0; i < total; i++) {
var color = data[i * 4 + cutSide];

if (colorCountMap[color]) {
colorCountMap[color] += 1;
}
else {
colorCountMap[color] = 1;
}
}
var medianColor = getMedianColor(colorCountMap, total);
var cutValue = medianColor.color;
var cutCount = medianColor.count;
var newRange = cutRange(colorRange, cutSide, cutValue);
var box1 = new ColorBox(newRange[0], cutCount, data.slice(0, cutCount * 4)),
box2 = new ColorBox(newRange[1], total - cutCount, data.slice(cutCount * 4))
return [box1, box2];
}

// 队列切割
function queueCut(queue, num) {

while (queue.length < num) {

queue.sort(function (a, b) {
return a.rank - b.rank
});
var colorBox = queue.pop();
var result = cutBox(colorBox);
queue = queue.concat(result);
}

return queue.slice(0, 8)
}

function themeColor(img, callback) {

var canvas = document.createElement('canvas'),
ctx = canvas.getContext('2d'),
width = 0,
height = 0,
imageData = null,
length = 0,
blockSize = 1,
cubeArr = [];

width = canvas.width = img.width;
height = canvas.height = img.height;

ctx.drawImage(img, 0, 0, width, height);

imageData = ctx.getImageData(0, 0, width, height).data;

var total = imageData.length / 4;

var rMin = 255,
rMax = 0,
gMin = 255,
gMax = 0,
bMin = 255,
bMax = 0;

// 获取范围
for (var i = 0; i < total; i++) {
var red = imageData[i * 4],
green = imageData[i * 4 + 1],
blue = imageData[i * 4 + 2];

if (red < rMin) {
rMin = red;
}

if (red > rMax) {
rMax = red;
}

if (green < gMin) {
gMin = green;
}

if (green > gMax) {
gMax = green;
}

if (blue < bMin) {
bMin = blue;
}

if (blue > bMax) {
bMax = blue;
}
}

var colorRange = [[rMin, rMax], [gMin, gMax], [bMin, bMax]];
var colorBox = new ColorBox(colorRange, total, imageData);

var colorBoxArr = queueCut([colorBox], 8);

var colorArr = [];
for (var j = 0; j < colorBoxArr.length; j++) {
colorBoxArr[j].total && colorArr.push(colorBoxArr[j].getColor())
}

callback(colorArr);
}

window.themeColor = themeColor
})()

2、八叉树算法

八叉树算法主要思路是将 R、G、B 通道的数值做二进制转换后逐行放下,可得到八列数字。如 #FF7880转换后为:

R: 1111 1111
G: 0111 1000
B: 0000 0000

再将 RGB 通道逐列粘合,可以得到 8 个数字,即为该颜色在八叉树中的位置,如图:

在将所有颜色插入之后,再进行合并运算,直到得到所需要的颜色数量为止。

在实际操作中,由于需要对图像像素进行遍历后插入八叉树中,并且插入过程有较多的递归操作,所以比中位切分法要消耗更长的时间。

(function () {

var OctreeNode = function () {
this.isLeaf = false;
this.pixelCount = 0;
this.red = 0;
this.green = 0;
this.blue = 0;
this.children = [null, null, null, null, null, null, null, null];
this.next = null;
}

var root = null,
leafNum = 0,
colorMap = null,
reducible = null;

function createNode(index, level) {
var node = new OctreeNode();
if (level === 7) {
node.isLeaf = true;
leafNum++;
} else {
// 将其丢到第 level 层的 reducible 链表中
node.next = reducible[level];
reducible[level] = node;
}

return node;
}

function addColor(node, color, level) {
if (node.isLeaf) {
node.pixelCount += 1;
node.red += color.r;
node.green += color.g;
node.bllue += color.b;
}
else {
var str = "";
var r = color.r.toString(2);
var g = color.g.toString(2);
var b = color.b.toString(2);
while (r.length < 8) r = '0' + r;
while (g.length < 8) g = '0' + g;
while (b.length < 8) b = '0' + b;

str += r[level];
str += g[level];
str += b[level];

var index = parseInt(str, 2);

if (null === node.children[index]) {
node.children[index] = createNode(index, level + 1);
}

if (undefined === node.children[index]) {
console.log(index, level, color.r.toString(2));
}

addColor(node.children[index], color, level + 1);
}
}

function reduceTree() {

// 找到最深层次的并且有可合并节点的链表
var level = 6;
while (null == reducible[level]) {
level -= 1;
}

// 取出链表头并将其从链表中移除
var node = reducible[level];
reducible[level] = node.next;

// 合并子节点
var r = 0;
var g = 0;
var b = 0;
var count = 0;
for (var i = 0; i < 8; i++) {
if (null === node.children[i]) continue;
r += node.children[i].red;
g += node.children[i].green;
b += node.children[i].blue;
count += node.children[i].pixelCount;
leafNum--;
}

// 赋值
node.isLeaf = true;
node.red = r;
node.green = g;
node.blue = b;
node.pixelCount = count;
leafNum++;
}

function buidOctree(imageData, maxColors) {
var total = imageData.length / 4;
for (var i = 0; i < total; i++) {
// 添加颜色
addColor(root, {
r: imageData[i * 4],
g: imageData[i * 4 + 1],
b: imageData[i * 4 + 2]
}, 0);

// 合并叶子节点
while (leafNum > maxColors) reduceTree();
}
}

function colorsStats(node, object) {
if (node.isLeaf) {
var r = parseInt(node.red / node.pixelCount);
var g = parseInt(node.green / node.pixelCount);
var b = parseInt(node.blue / node.pixelCount);

var color = r + ',' + g + ',' + b;
if (object[color]) object[color] += node.pixelCount;
else object[color] = node.pixelCount;
return;
}

for (var i = 0; i < 8; i++) {
if (null !== node.children[i]) {
colorsStats(node.children[i], object);
}
}
}

window.themeColor = function (img, callback) {
var canvas = document.createElement('canvas'),
ctx = canvas.getContext('2d'),
width = 0,
height = 0,
imageData = null,
length = 0,
blockSize = 1;

width = canvas.width = img.width;
height = canvas.height = img.height;

ctx.drawImage(img, 0, 0, width, height);

imageData = ctx.getImageData(0, 0, width, height).data;

root = new OctreeNode();
colorMap = {};
reducible = {};
leafNum = 0;

buidOctree(imageData, 8)

colorsStats(root, colorMap)

var arr = [];
for (var key in colorMap) {
arr.push(key);
}
arr.sort(function (a, b) {
return colorMap[a] - colorMap[b];
})
arr.forEach(function (item, index) {
arr[index] = item.split(',')
})
callback(arr)
}
})()

3、其它算法

  • 最小差值法
  • 魔法数字法
  • 聚类
  • 色彩建模法

三、使用 color.js 库快捷提取

color.js 可以快捷提取图片主题色。

1、安装

npm install color.js

<script src="https://unpkg.com/color.js@1.2.0/dist/color.js"></script>

2、使用

import { prominent } from 'color.js'
import curImg from './photo.jpg'

prominent(curImg, { amount: 1 }).then((color) => {
console.log(color) // [20, 20, 40]
})
// 或
const color = await prominent(curImg, { amount: 1 })
console.log(color) // [20, 20, 40]

除了以上,也可以用 Color Thief 提取主题色。